
Genet. Sel. Evol. 38 (2006) 127–146 127
c© INRA, EDP Sciences, 2006
DOI: 10.1051/gse:2005032

Original article

Prediction of genetic gain from quadratic
optimisation with constrained rates

of inbreeding

Beatriz Villanuevaa∗, Santiago Avendañoa,
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Abstract – There are selection methods available that allow the optimisation of genetic contri-
butions of selection candidates for maximising the rate of genetic gain while restricting the rate
of inbreeding. These methods imply selection on quadratic indices as the selection merit of a
particular individual is a quadratic function of its estimated breeding value. This study provides
deterministic predictions of genetic gain from selection on quadratic indices for a given set of
resources (the number of candidates), heritability, and target rate of inbreeding. The rate of gain
was obtained as a function of the accuracy of the Mendelian sampling term at the time of con-
vergence of long-term contributions of selected candidates and the theoretical ideal rate of gain
for a given rate of inbreeding after an exact allocation of long-term contributions to Mendelian
sampling terms. The expected benefits from quadratic indices over traditional linear indices (i.e.
truncation selection), both using BLUP breeding values, were quantified. The results clearly in-
dicate higher gains from quadratic optimisation than from truncation selection. With constant
rate of inbreeding and number of candidates, the benefits were generally largest for intermedi-
ate heritabilities but evident over the entire range. The advantage of quadratic indices was not
highly sensitive to the rate of inbreeding for the constraints considered.

prediction of genetic gain / quadratic indices / control of inbreeding / genetic contributions

1. INTRODUCTION

Quadratic optimisation [7,8,10,11] provides a solution to the problem of op-
timising selection decisions in breeding schemes for maximising genetic gain
(ΔG) with constrained rates of inbreeding (ΔF). The selection merit of indi-
vidual candidates is a quadratic function of their estimated breeding values and
therefore selection is based on quadratic indices. Stochastic simulation studies
have shown that the extra response from quadratic indices over traditional lin-
ear indices (i.e. truncation selection) at the same ΔF is large, ranging from
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20% to 60% (e.g. [10]). Also, substantial increases in ΔG are expected when
applying quadratic indices to real livestock populations [1, 9].

Although the benefits in terms of gain from quadratic optimisation are clear
from empirical studies, there is not yet a framework available for obtaining
deterministic predictions of ΔG when using this approach. Grundy et al. [7]
showed that the ideal optimal solution for a given constraint on ΔF could be
obtained after an exact linear allocation of long-term genetic contributions of
selected candidates (r) to their Mendelian sampling terms (a). Using stochastic
simulations, Avendaño et al. [2] empirically confirmed that quadratic optimisa-
tion allocates contributions of selected candidates according to the best infor-
mation on their Mendelian sampling terms and not on their breeding values.
This provided the link between the optimisation of breeding schemes using
quadratic indices and the maximisation of the covariance between r and a im-
plicit in the definition of genetic gain of Woolliams and Thompson [18] (i.e.
E [ΔG] =

∑
riai).

Grundy et al. [7] also provided a deterministic prediction for the ideal rate of
genetic gain (ΔGideal) but the empirical gains obtained after applying quadratic
optimisation were consistently lower than ΔGideal. The lack of knowledge
about the true Mendelian sampling term at selection time was one of the rea-
sons of the inability of quadratic optimisation to attain the ideal optimal solu-
tion [20]. Recently, Avendaño et al. [3] have provided deterministic predictions
of the accuracy of Mendelian sampling terms both at selection time and at con-
vergence of long-term contributions that can prove to be useful for filling the
gap in the prediction of gain from selection on quadratic indices.

The aim of this study was to develop a deterministic framework for predict-
ing the rate of genetic gain under quadratic optimisation when BLUP is used to
estimate breeding values. The approach combined predictions of the accuracy
of the estimated Mendelian sampling term at the time of convergence of long-
term contributions [3] with predictions of the ideal rate of genetic gain [7]. Pre-
dictions of gain from quadratic optimisation were then compared to those from
traditional truncation selection and the expected benefits from using quadratic
indices were quantified.

2. METHODS

2.1. Ideal and upper bound genetic gain under a constrained rate
of inbreeding

Assuming that Mendelian sampling terms are normally distributed with
standard deviation equal to one, Grundy et al. [7] showed that the ideal
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theoretical rate of genetic gain (ΔGideal) can be defined in terms of the stan-
dardised truncation point (x) and the selection intensity (i) as

ΔGideal = (i − x)−1 or equivalently i/k (1)

where k = i(i − x) and i and x are the solution for

(4TΔF)−1 = p(i − x)2(1 + x2 − ix)−1, (2)

being T the total number of candidates per generation (T/2 males and T/2 fe-
males), ΔF the desired rate of inbreeding, and p the proportion of selected can-
didates. Values for p, and hence x and i, can be found using the Newton-Rapson
method for defined values of TΔF (App. A).

The variance of the Mendelian sampling terms is not reduced by selec-
tion through gametic phase disequilibrium (i.e. the Bulmer effect). Hence,
ΔGideal from expression (1) can be conveniently expressed in terms of the trait
additive genetic variance in the base population (σ2

A0
), resources available (T )

and the target ΔF as

ΔGideal =
i
√

(0.5)σ2
A0

k
· (3)

This assumes that breeding values and Mendelian sampling terms are known
without error (i.e. the initial heritability, h2

0, is equal to one and the environ-
mental variance equals to zero). It also assumes a constant Mendelian variance
such that losses from inbreeding are restored by mutational variance. In other
circumstances this will provide a medium term approximation.

It is valid to ask how the expression for ΔGideal which implies an exact
allocation of long-term contributions to Mendelian sampling terms compares
to conventional formulae for predicting the rate of gain under standard trun-
cation selection under the same circumstances of known breeding values and
Mendelian sampling terms. The equilibrium rate of gain after accounting for
gametic phase disequilibrium generated by selection [6] for mass truncation
selection can be approximated as

ΔGm_tru =
iσ2

A0
σ−1

P

(1 + kh2)
(4)

where σ2
P and h2 are respectively the phenotypic variance and heritability, both

at equilibrium. With the assumption of h2
0 = h2 = 1 (i.e. breeding values

are assumed known without error) then σP = σA, σA0/σA =
√

1 + k and the
equation (4) can be re-written as

ΔGm_tru =
iσA0√
1 + k

· (5)
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Equation (5) shows that the form of ΔGideal in equation (3) is not unexpected
and that the expressions for the rate of genetic gain after linear allocation of
Mendelian sampling terms and long-term contributions for constrained ΔF,
and that for truncation selection are closely related. Importantly, it arises that
for the same σA0, ΔGm_tru < ΔGideal. The validity of this inequality is shown
in Figure 1, where both expressions for the rate of gain are compared at the
same x and k (i.e. not at the same ΔF). Figure 1 shows that, assuming an ex-
act allocation of long-term contributions to Mendelian sampling terms, and
known Mendelian sampling terms for each selected candidate, ΔGideal is al-
ways greater than ΔGm_tru when compared at the same truncation point. As
expected, the difference between ΔGideal and ΔGm_tru was reduced as x and k
increased, approaching zero at the limit (k = 1). Typical values for x in prac-
tical livestock breeding programmes could range from −1.0 to 3.5, giving a
corresponding range for k of 0.34 to 0.95.

As pointed out by Grundy et al. [7] and Woolliams et al. [20], one of the fac-
tors for which the ΔGideal is unattainable is that the true Mendelian sampling
terms are unknown, so contributions of selected candidates are allocated ac-
cording to initial estimates at the time of selection. Grundy et al. [7] suggested
an intuitive expression for predicting the upper bound genetic gain obtained
under quadratic optimisation (ΔGquad) that accounts for this lack of knowledge
of the true Mendelian sampling terms:

ΔGquad = ρconv ΔGideal, (6)

where ρconv is the accuracy of the Mendelian sampling term at convergence of
long-term contributions.

2.2. Predicting the effective number of parents at the time of selection

The population structure at the time of selection is required for obtaining
the predictions for ρconv from the extended pseudo-BLUP index of Avendaño
et al. [3]. In their study, the ‘effective number of parents’ of equal contribu-
tions [12] at selection time was calculated empirically (i.e. from simulations)

as Nc =
[∑

c2
]−1

, where the sum of squares of contributions was taken over all
selected candidates resulting from the optimisation. The population structure at
selection time was derived as ns = nd =

1
2 Nc and no = T/nd, where ns, nd and

no are respectively the number of sires, the number of dams and the number of
offspring per dam. A mating ratio equal to one was therefore assumed.

Since the primary objective here was to obtain a completely determin-
istic prediction for ΔGquad, an approach was derived for predicting Nc.
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Figure 1. Rate of genetic gain from mass truncation selection (◦) and theoretical ideal
rate of gain from optimised selection (•) after an exact allocation of long-term contri-
butions to Mendelian sampling terms for a range of deviations of the truncation point
from the mean (x, in a) and coefficients of variance reduction (k, in b).

The approach was based on predictions for the ratio Nc/Nr, where Nr is the
‘effective number of ancestors’. The ratio Nc/Nr measures the change in the
equivalent number of parents from initial selection that are still represented
when their contributions converge. The effective number of ancestors can be
derived directly from the inbreeding constraint as Nr = [4ΔF]−1 given that
E(ΔF) = 1

4

∑
r2

i [22]. Therefore, Nc could be obtained from a prediction of
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Nc/Nr and the ΔF constraint. The prediction approach for the ratio Nc/Nr is
described in Appendix B.

2.3. Predicting the accuracy of the Mendelian sampling term

Predictions for the accuracy of the Mendelian sampling term needed to pre-
dict ΔGquad from equation (6) were obtained using the approach of Avendaño
et al. [3]. Briefly, a selection index theory framework was used where the orig-
inal pseudo-BLUP index of Wray and Hill [21], which assumed a nested mat-
ing structure with m dams mated to each sire, was extended to accommodate
three extra sources of information related to the Mendelian sampling term.
Here a mating ratio m = 1 was assumed. The three sources were the estimated
Mendelian sampling term of the dam, the mean estimated Mendelian sampling
term of all dams mated to the sire, and the estimated Mendelian sampling term
of the sire. This extension allowed the accuracy of the Mendelian sampling
term to be predicted for selected candidates just after being selected (ρsel), and
after becoming sires (ρsir) or dams (ρdam) with recorded offspring. The latter
was considered to be the accuracy at the convergence of long-term contribu-
tions. With a mating ratio equal to one, ρsir = ρdam = ρconv.

2.4. Simulations

The rate of gain ΔGquad predicted from equation (6) was compared to the
empirical responses obtained from stochastic simulations (ΔGsim) over several
generations. An additive infinitesimal model [6] was assumed for the trait un-
der selection. The true breeding values of base population individuals were
obtained from a normal distribution with mean zero and variance equal to the
initial heritability (h2

0) so the phenotypic variance was assumed equal to one. In
subsequent generations, the true breeding value of the progeny was obtained
as half the sum of the true breeding values of their parents plus a random
Mendelian sampling term. The Mendelian sampling term of an individual was
sampled from a normal distribution with mean zero and variance 1

2 h2
0 (i.e. the

effects of inbreeding on the genetic variance were ignored). The phenotypic
value for any individual at any generation was obtained by adding an envi-
ronmental component sampled from a normal distribution with mean zero and
variance 1−h2

0 to the true breeding value. Populations with discrete generations
were evaluated over 10 generations of selection. In the base generation (t = 0),
T individuals (T/2 males and T/2 females) with family full-sib structure were
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generated. The first generation of selection was obtained from the mating of
animals selected at t = 0.

Selection decisions were optimised for each generation by using the op-
timisation algorithm described by Meuwissen [10] which gives the maxi-
mum genetic gain while constraining the inbreeding rate to a specific value.
A BLUP animal model was used to estimate breeding values. The constant
rate of inbreeding in the long-term was achieved by setting the constraint on
the average coancestry of selected candidates (cTAc/2) to 1 – (1–ΔF)t , where
A is the average relationship matrix, c is a vector of projected use of candi-
dates (i.e. mating proportions), ΔF is the desired rate and t is the generation
number [7]. Mating among selected candidates was at random. Populations of
T = 100, 200 or 300 candidates per generation were simulated. A broad range
of trait h2

0 (0.01, 0.25, 0.50, 0.75 and 0.99) was studied. ΔF was constrained
to 0.05, 0.025, 0.0125 and 0.01 per generation. The parameter values go be-
yond those commonly encountered in practice which correspond to the low to
intermediate values for h2

0, and the lower values of ΔF. One hundred replicates
were performed for each scenario.

2.5. Comparison of deterministically predicted genetic gains
from optimised selection and truncation selection at the same
rate of inbreeding

The rate of gain (ΔGquad) predicted from equation (6) was also compared
to the predicted rate of gain obtained from truncation selection (ΔGtru) at
the same ΔF for a range of scenarios all using BLUP genetic evaluation.
The predictions of genetic gain and rate of inbreeding for truncation selec-
tion schemes were obtained using the SelAction software [4, 5, 13]. A mating
ratio equal to one was assumed for all schemes under truncation selection (i.e.,
ns = nd = T/2 and no = T /nd across generations).

Comparisons between truncation and optimised selection at the same ΔF
were carried out in two ways. Firstly, ΔGquad and ΔGtru were compared for an
extensive range of ΔF at two fixed levels of h2

0 (0.10 and 0.35). Comparisons
across ΔF were carried out with T = 100 or 300 candidates. In order to obtain
an extensive range of ΔF (from 0.1% up to 4.0%), the population structure
was varied by changing the proportion of selected individuals at regular inter-
vals. For each population structure, SelAction [13] was used to predict ΔGtru

and the corresponding ΔF. For each level of ΔF predicted under truncation
selection, Nc was obtained from T , ΔF and h2

0 using the approach described
above. Then ΔGquad under optimised selection was calculated after predicting
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ρconv and ΔGideal from the modified pseudo-BLUP index [3] and equation (3),
respectively.

Secondly, ΔGquad and ΔGtru were compared for an extensive range of h2
0 and

two fixed levels of ΔF(0.01 and 0.025). Comparisons across h2
0 (with h2

0 rang-
ing from 0.05 to 0.85) were carried out with T = 100, 300 and 1000. For a
given combination of T and h2

0, the population structure that gave the desired
ΔF under truncation selection was obtained using SelAction. A maximum de-
viation of 0.05 with respect to the target ΔF was allowed. Then, as before the
corresponding Nc was obtained from T , ΔF and h2

0, and ΔGquad was calculated
from ρconv and ΔGideal.

3. RESULTS

3.1. Deterministic prediction of the rate of genetic gain under quadratic
optimisation

Table I shows a comparison between ΔGobs (simulations) and ΔGquad (pre-
dictions) for the broad range of h2

0 and ΔF constraints studied. The % error
ranged from –0.7% (h2

0 = 0.5 and ΔF = 0.0250) to 15.0% (h2 = 0.99 and
ΔF = 0.0100). Over-prediction was the norm for the most relaxed ΔF con-
straint (i.e. ΔF = 0.0500) and for h2

0 = 0.99. However, under-prediction was
typically observed for the most stringent ΔF constraints with h2

0 < 0.99. It
should be noted that accurate (% error less than 10%) predictions were ob-
tained for the range of ΔF constraints most likely to be applied in practice
(e.g. from 0.0100 to 0.0250) in selection programmes aimed to improve typi-
cal traits of economic importance (i.e. with h2

0 levels of up to 0.50).
In Figure 2, predictions of ΔGquad (using predicted Nc) are compared with

the rates of gain from simulations for two scheme sizes (T = 100 and
T = 300), a broad range of h2

0 and two ΔF constraints (ΔF = 0.0100 and
ΔF = 0.0250). Standard errors for simulated rates of gain were always less
than 0.02 and ranged from 0.001 to 0.014. Predictions for ΔGquad were very
similar to those using empirical Nc for both scheme sizes (not shown). Ex-
cluding the extreme h2

0 = 0.99, Figure 2a shows a good agreement between
ΔGquad and ΔGobs for the smaller scheme (T = 100) at both ΔF constraints.
For ΔF = 0.0100, ΔGquad under-predicted ΔGobs on average by –5.9%, but
the differences between predicted and observed values were non-significant
(p > 0.05) for h2

0 ranging from 0.01 to 0.7. Similarly, for ΔF = 0.0250,
the difference between ΔGquad and ΔGobs was non-significant (p > 0.05) for
h2

0 ≤ 0.6.
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Table I. Rate of gain obtained from simulations (ΔGobs), theoretical ideal upper limit
(ΔGideal), predicted rate of gain from quadratic optimisation (ΔGquad), and predicted
accuracy of the Mendelian sampling term for sires (ρconv) at the time of convergence
of the long-term contributions for a range of h2

0 and ΔF constraints and T = 100.

h2
0 ΔF ΔG1,2

obs ΔGideal ρconv ΔGquad % error3

0.01 0.0500 0.021 0.153 0.148 0.023 7.8
0.0250 0.015 0.132 0.123 0.016 8.0
0.0125 0.011 0.108 0.100 0.011 –3.5
0.0100 0.010 0.099 0.096 0.009 –4.4

0.25 0.0500 0.374 0.766 0.558 0.427 14.3
0.0250 0.316 0.660 0.495 0.327 3.4
0.0125 0.250 0.538 0.435 0.234 –6.5
0.0100 0.227 0.494 0.419 0.207 –9.0

0.50 0.0500 0.668 1.083 0.673 0.729 9.1
0.0250 0.587 0.933 0.625 0.583 –0.7
0.0125 0.463 0.761 0.573 0.436 –5.9
0.0100 0.420 0.700 0.560 0.392 –6.7

0.75 0.0500 0.983 1.327 0.749 0.994 1.2
0.0250 0.849 1.143 0.714 0.816 –3.9
0.0125 0.677 0.932 0.683 0.636 –6.0
0.0100 0.612 0.856 0.679 0.581 –5.0

0.99 0.0500 1.323 1.525 0.947 1.444 9.2
0.0250 1.132 1.313 0.952 1.251 10.5
0.0125 0.908 1.071 0.961 1.029 13.3
0.0100 0.825 0.984 0.964 0.948 15.0

1 Obtained at t = 3.
2 Standard errors over replicates ranged from 0.003 to 0.001 for h2

0 = 0.01, from 0.010
to 0.006 for h2

0 = 0.25, from 0.0174 to 0.007 for h2
0 = 0.50, from 0.018 to 0.009 for

h2
0 = 0.75 and from 0.016 to 0.009 for h2

0 = 0.99. The higher and lower bound of each
range corresponds to ΔF = 0.05 and ΔF = 0.01, respectively.
3 % error = [( ΔGquad– ΔGobs)/ ΔGobs] 100.

For the largest scheme (T = 300), ΔGquad still provided good predictions of
gain for the most stringent constraint. For ΔF = 0.0100, the difference between
ΔGquad and ΔGobs was non-significant (p > 0.05) for h2

0 < 0.9 (Fig. 2b). For
h2

0 ≤ 0.7, ΔGquad over-predicted ΔGobs by about 3.9%, and for h2
0 ≥ 0.6ΔGquad

under-predicted ΔGobs by about –3.7%. Predictions were less accurate for
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Figure 2. Observed (symbols) and predicted (lines) rate of genetic gain for a range
of base heritabilities (h2

0) and two population sizes (T = 100, in a and T = 300, in
b). ——: ΔGquad under ΔF = 0.010; - - -: ΔGquad under ΔF = 0.025; •: ΔGobs under
ΔF = 0.010; ◦: ΔGobs under ΔF = 0.025.

ΔF = 0.0250 and ΔGquad over-predicted ΔGobs by on average 11.8% in the
whole range of h2

0 up to 0.8. The difference between ΔGquad and ΔGobs was
significant (p < 0.05) for h2

0 ranging from 0.1 to 0.6.

3.2. Comparison of predicted rates of genetic gain from truncation
and quadratic optimisation at the same rate of inbreeding

The rates of gain under truncation and optimised selection for different ΔF
levels are presented in Figure 3. At a given ΔF, the gain from optimised se-
lection (ΔGquad) was always higher than that from truncation selection (ΔGtru)
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Figure 3. Relationship of predicted rates of gain (ΔG) and rates of inbreeding (ΔF,
in %) for schemes under BLUP truncation (◦) and BLUP quadratic optimisation (•)
selection for different base heritabilities (- - -: h2

0 = 0.10; ——: h2
0 = 0.35) and popu-

lation sizes (T = 100, in a and T = 300, in b).

for both heritabilities and scheme sizes. The advantage of ΔGquad over ΔGtru

increased as ΔF increased (i.e. as the constraint in quadratic optimisation be-
comes less stringent) and was the greatest for the highest h2

0 and the largest
breeding scheme. For instance, for ΔF = 0.0100 and h2

0 = 0.35, the advantage
of ΔGquad over ΔGtru was 26.5% (0.286 versus 0.226) for T = 100 and 32.5%
(0.473 versus 0.357) for T = 300. For ΔF = 0.0100 and h2

0 = 0.10 the advan-
tage of ΔGquad over ΔGtru was 17.3% (0.095 versus 0.081) for T = 100 and
30.4% (0.163 versus 0.125) for T = 300. The same profile was found when
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Figure 4. Ratio of predicted rate of gain under BLUP quadratic optimisation (ΔGquad)
over predicted rate of gain under BLUP truncation selection (ΔGtru) for a range of
base heritabilities (h2

0), populations sizes (�: T = 100; �: T = 300; • : T = 1000) and
two inbreeding constraints ΔF (ΔF = 0.0100, in a, and ΔF = 0.0250, in b).

T was increased up to 1000 candidates (results not shown). In this scenario,
the superiority of ΔGquad over ΔGtru was about 40% for ΔF = 0.0100.

Figure 4 shows the change of ΔGquad/ΔGtru with h2
0 for three population

sizes and two fixed values of ΔF (0.0100 and 0.0250). Two situations can be
identified according to ranges of h2

0 below or above 0.55. For h2
0 up to 0.55,

ΔGquad/ΔGtru was greater for ΔF = 0.0250 than for ΔF = 0.0100 and the max-
imum ratio increased with T . For ΔF = 0.0100, the maximum ΔGquad/ΔGtru

was 1.41 for T = 1000, 1.32 for T = 300 and 1.27 for T = 100, and it
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occurred at h2
0 = 0.15, 0.25 and 0.45, respectively. For ΔF = 0.0250, the max-

imum ΔGquad/ΔGtru was 1.45 for T = 1000, 1.40 for T = 300 and 1.32 for
T = 100, and it occurred at h2

0 = 0.15, 0.25 and 0.25, respectively. For h2
0 above

0.55 and ΔF = 0.0100, ΔGquad/ΔGtru was fairly constant up to h2
0 = 0.85 for

T = 100, whereas that for T = 300 and T = 1000 the ratio decreased down
to 1.15 and 1.13, respectively. For ΔF = 0.0250, ΔGquad/ΔGtru decreased for
the three population sizes reaching minimum values of 1.16, 1.13 and 1.12 (for
T = 100, 300 and 1000, respectively) at h2

0 = 0.85. Thus the effect of the size
of the scheme on the superiority of quadratic optimisation over truncation se-
lection decreased as h2

0 increased (with the exception of very small schemes at
tight ΔF constraints).

4. DISCUSSION

This study presents deterministic predictions of the maximum potential rate
of genetic gain that can be obtained in schemes using selection on quadratic
indices where the rate of inbreeding is restricted to pre-defined levels. The two
key components required for the prediction are the following: (i) a prediction
of the ideal rate of gain after a perfect allocation of long-term contributions
to Mendelian sampling terms for a given ΔF, and (ii) a prediction of the ul-
timate accuracy of the Mendelian sampling term at the time of convergence
of the long-term contributions of selected candidates. The first component (i.e.
prediction of ΔGideal) was available from Grundy et al. [7] and the second com-
ponent (i.e. prediction of the accuracy) from Avendaño et al. [3]. The approach
provided accurate predictions of ΔGquad for realistic h2

0 and target ΔF values in
breeding schemes of contrasting size. However, ΔGquad was less satisfactory
and over-predicted gain with the extreme values of ΔF (5%) or h2

0 (0.99). The
deterministic method provides a solution to the gap in prediction tools for the
design of breeding schemes under constrained rates of inbreeding and gives
the necessary accompanying tool to the current available operational dynamic
selection algorithms.

Deterministic methods for the strategic optimisation of breeding schemes,
that is, the maximisation of genetic gain for a pre-defined ΔF were previously
developed for schemes under mass [15,16], and index selection [15]. However,
these methods dealt with truncation selection, and were unlinked to dynamic
selection algorithms based upon quadratic indices [7, 10]. For truncation se-
lection, Villanueva et al. [17] and Bijma et al. [5] used predictions of ΔG
and/or ΔF based on lifetime contributions (ui) of selected candidates. The ba-
sic framework for predicting ui was laid down by Woolliams et al. [19] and is
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based on ui = E(ri|si) where si is the selective advantage of the individual i.
However, although this framework is relevant for truncation selection it may
not be appropriate for quadratic indices [19]. Under truncation selection, selec-
tive advantages are defined as functions of the breeding value of the candidates
whereas under quadratic optimisation the selective advantage is related to the
Mendelian sampling term [2]. The main limitation for extending the predic-
tion approach based on ui to constrained optimisation under BLUP selection
is the difficulty of predicting the selection intensity for the group of selected
candidates for which the average coancestry has been restricted [20].

Here, the predicted accuracy of the Mendelian sampling term was the key
parameter for obtaining predictions of genetic gain under constrained ΔF. The
lack of knowledge of the Mendelian sampling term (the selective advantage in
quadratic indices) and the availability of only initial estimates at the time of
selection is one of the central factors that prevent attaining the ideal optimal
solution of an exact allocation of long-term contributions to Mendelian sam-
pling terms [7, 20]. Therefore, by using predictions of the ultimate accuracy,
the over-prediction represented by ΔGideal is directly adjusted. The inability to
set the contributions of selected candidates to their desired values (i.e. inde-
pendently from the contributions of future descendants) is the second factor
that drives the observed outcome of the constrained optimisation away from
the ideal solution [7,20]. Not accounting for this effect when adjusting ΔGideal

does not seem to represent a strong limitation since predictions ignoring it were
reasonably accurate for a broad range of parameters.

Although the deterministic framework presented is self-contained and can
be used by the specification of solely T , h2

0 and ΔF, it should be recognised
that it has an element of empirical nature and so is limited. This arises from
the regression approach for predicting the ratio Nc/Nr that implied the em-
pirical relationship between the optimisation outcome at selection time (

∑
c2)

and at convergence (
∑

r2) for different h2
0, ΔF restrictions and population sizes.

Apart from the method of inferring equilibrium structure, further sources of er-
ror may arise from the use of standard selection intensities that assume infinite
population sizes, particularly in the smaller schemes where indices among rela-
tives may be highly correlated, and from the use of linear indices in the method
to calculate ρconv for quadratic optimisation. The relatively poor performance
of the prediction for the extreme heritability h2

0 = 0.99 is not unexpected since
a very high accuracy at the start of the optimisation process implies that the
contributions assigned initially will differ greatly among individuals and there
will be no scope to change them over time e.g. to accommodate desired contri-
butions from their offspring. In contrast, with lower values of h2

0, the assigned
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initial contributions will be less variable and these can be adjusted more easily,
if necessary, in subsequent generations as information accumulates.

Predictions for ΔGquad ignore the effects of inbreeding on the genetic vari-
ance and thus refer to either (i) a near-asymptotic response to selection in
the medium term after accounting for the Bulmer effect, or (ii) where losses
from inbreeding are balanced by mutational variance entering the population.
Villanueva and Woolliams [16] accounted for the effect of inbreeding on ge-
netic variance and found for sib-indices that the optimum schemes for max-
imising gain at different generations (e.g. t = 5 or t = 20) under restricted
inbreeding were similar. In essence, by applying a restriction on the accumula-
tion of inbreeding, the loss of variance is also restricted. In any case, compar-
isons of predicted and simulated gains were free of bias since the rate of gain
obtained from simulations also ignored reductions of genetic variance due to
inbreeding.

A novel result of this study was the deterministic comparison of the rate
of gain for schemes under BLUP optimised and truncation selection at the
same ΔF. The results in Figure 4 suggest that, for realistic target ΔF val-
ues in commercial breeding populations, the maximum advantage of quadratic
optimisation (ΔGquad) over truncation selection (ΔGtru) occurs at h2

0 ranging
from 0.15 to 0.35. In addition, the results indicate that for any level of ΔF,
ΔG is higher for optimised than for truncation selection and that for h2

0 up to
0.55 the superiority of ΔGquad over ΔGtru increases as the population size in-
creases. Benchmark maximum values found for the ratio ΔGquad/ΔGtru were
1.40 and 1.45 for the largest scheme (i.e. T = 1, 000), and 1.27 and 1.32 for
the smallest scheme (i.e. T = 100) for ΔF = 0.0100 and ΔF = 0.0250, re-
spectively. The predicted superiority of quadratic optimisation over truncation
selection agreed with empirical evidence from real livestock populations of
Aberdeen Angus (beef cattle) and Meatlinc (sheep) [1]. At the observed ΔF in
these populations, ΔGquad / ΔGtru was 1.30 and 1.17 for Aberdeen Angus (for
ΔF = 0.0020) and Meatlinc (for ΔF = 0.0100), respectively.

A number of points should be addressed in relation to the predicted supe-
riority of ΔGquad over ΔGtru. First, it might be counter intuitive that ΔGquad /

ΔGtru increased with the size of the scheme. At first sight it might be expected
that the benefits would be the greatest when the constraint on ΔF is hardest to
meet (i.e. when T is small). However, large resources enable larger family sizes
to be available, consequently increasing the accuracy of the evaluation of all
terms required, and also allowing for selection and use more closely aligned to
the optimum indicated by the quadratic index. Second, it should be noted that
values for ΔGquad /ΔGtru might be overestimated for two reasons. The benefits
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of the quadratic index over truncation selection shown in Figures 3 and 4 in-
clude the benefits of factorial mating (assumed with quadratic indices) over
hierarchical mating with a mating ratio equal to one (assumed with truncation
selection). Nevertheless, the effect of the family structure on ΔGquad / ΔGtru

is expected to become less important as the scheme size increases [14]. Also,
following the approach of Villanueva and Woolliams [16], higher responses
could be obtained from truncation selection if the weights given to the dif-
ferent sources of information in the pseudo-BLUP index were optimised for
maximising ΔGtru for a given constraint on ΔF. In any case, the results are
indicative of the potential benefits of quadratic indices and the potential trends
in the benefits for the key parameters involved.

As it stands today, the prediction framework can be readily applied in
species with no restriction in reproductive rates (e.g. fish and trees) to improve
traits with phenotypes available in both sexes. Extensions of this framework,
particularly to accommodate reproductive limitations would be relevant to al-
low its application in livestock populations, particularly of cattle and sheep.
Although a mating ratio of one has been assumed here, the current predictions
of the Mendelian sampling accuracy allow any mating ratio and are thus not a
limitation. In contrast, an expression for the ideal optimal ΔG when reproduc-
tive limitations exist needs to be developed.

These results are critical from the point of view of the strategic design of
practical breeding schemes, since with this framework breeders will be able
to set their risk preference (i.e. the target ΔF) and predict the benefit from
changing from their current selection practices (namely, truncation selection)
to optimised selection. In a subsequent stage, available operational tools [7,10]
for making selection decisions on a day-to day basis can be applied. Both the
design tool (a priori) and the operational (a posteriori) tool have the same
underlying definition of genetic gain that is expressed in terms of long-term
genetic contributions and Mendelian sampling terms [18]. Thus, a prediction
framework for ΔGquad is a necessary accompanying tool for the available op-
erational dynamic selection algorithms.
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APPENDIX A: IMPLEMENTATION OF THE NEWTON-RAPHSON
METHOD FOR FINDING THE TRUNCATION POINT
AND THE SELECTION INTENSITY FOR A GIVEN
ΔF CONSTRAINT

In order to find the values of i and x that satisfy (4TΔF)−1 = p(i − x)2(1 −
ix+ x2)−1 for given values of T and ΔF, a starting value of zero was given to x.
Then, iterations were performed such as xt = xt−1− [ f (xt−1)/ f ′(xt−1)], where
f (xt−1) = [p(i − x)2/(1 − ix + x2)] − (4TΔF)−1, f ′(xt−1) = 2p(i − x)[i(i − x) −
1]/(1 − ix + x2)2, and p and i are taken from the truncated normal distribution
for the normal deviate xt−1.

APPENDIX B: PREDICTION OF THE RATIO OF EFFECTIVE
NUMBER OF PARENTS AT THE TIME OF SELECTION (Nc)
TO EFFECTIVE NUMBER OF PARENTS AT THE TIME
OF CONVERGENCE OF CONTRIBUTIONS (Nr)

The prediction of Nc/Nr was carried out in several steps. Firstly, the empir-
ical ratios Nc/Nr observed from the simulation were plotted against 1 − h2

0 for
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−

Figure B1. Relationship between the empirical ratio Nc/Nr and (1 − h2
0) for different

levels of TΔF resulting from T = 100, 200 and 300, and ΔF = 0.0250, 0.0125 and
0.0100. x: TΔF = 1.0; ◦: TΔF = 2.0; 	: TΔF = 3.0; ♦: TΔF = 5.0; �: TΔF = 7.5.

different values of TΔF (Fig. B1). Secondly, the regression coefficients of the
double natural logarithm (ln) of Nc/Nr on 1− h2

0, namely bTΔF , were estimated
for several levels of TΔFusing the model

ln[ln(Nc/Nr)] = a1 + bTΔF(1 − h2
0) (B1)

where a1 is the intercept. The double natural logarithm of Nc/Nr was taken to
make the regression of Nc/Nr on 1 − h2

0 linear. Thirdly, the regression coeffi-
cients for each level of TΔF were regressed on ln(TΔF) as

bTΔF = a2 + b2 ln(TΔF) (B2)

where a2 is the intercept. A full prediction model can be written by substituting
(B2) in (B1):

ln[ln(Nc/Nr)] = a1 + [a2 + b2 ln(TΔF)](1 − h2
0)

which resulted in

ln[ln(Nc/Nr)] = −1.459 + [0.755 + 0.367 ln(TΔF)](1 − h2
0)

where the intercept corresponds to the common intercept of the nested regres-
sion of ln[ln( Nc/Nr)] on 1 − h2

0 for each level of TΔF. After taking anti-
logarithms, Nc/Nr can be expressed in terms of 1 − h2

0 and TΔF as

ln(Nc/Nr) = ea1 TΔFb2 ea2(1−h2
0),
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and predicted from

ln(Nc/Nr) = 0.2325(TΔF)0.3671e[0.7553(1−h2
0)].

The correlation between the ratio Nc/Nr resulting from the simulation (empir-
ical) and the predicted Nc/Nr was 0.92. This correlation was obtained using
different values for h2

0 and TΔF resulting from T = 100, 200 and 300, and
ΔF = 0.025, 0.0125 and 0.010.
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